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LCD Motion Blur:

Modeling, Analysis and Algorithm
Stanley H. Chan, Student Member, IEEE, and Truong Q. Nguyen, Fellow, IEEE.

Abstract—Liquid crystal display (LCD) devices are well known
for their slow responses due to the physical limitations of liquid
crystals. Therefore, fast moving objects in a scene are often
perceived as blurred. This effect is known as the LCD motion
blur. In order to reduce LCD motion blur, an accurate LCD
model and an efficient deblurring algorithm are needed. However,
existing LCD motion blur models are insufficient to reflect
the limitation of human eye tracking system. Also, the spatio-
temporal equivalence in LCD motion blur models has not been
proven directly in the discrete two-dimensional spatial domain,
although it is widely used.

There are three main contributions of this paper: modeling,
analysis and algorithm. First, a comprehensive LCD motion blur
model is presented, in which human eye tracking limits are taken
into consideration. Second, a complete analysis of spatio-temporal
equivalence are provided and verified using real video sequences.
Third, an LCD motion blur reduction algorithm is proposed.
The proposed algorithm solves an l1-norm regularized least-
squares minimization problem using a subgradient projection
method. Numerical results show that the proposed algorithm
gives higher PSNR, lower temporal error and lower spatial error
than motion compensated inverse filtering (MCIF) and Lucy-
Richardson deconvolution algorithm, which are two state-of-the-
art LCD deblurring algorithms.

Index Terms—Liquid crystal displays, LCD, motion blur,
human visual system, subgradient projection, spatial consistency,
temporal consistency

I. INTRODUCTION

L IQUID Crystal Display (LCD) devices are known to

have slow responses due to the physical limitations of

liquid crystals (LC). LC are organic fluids that exhibit both

liquid and crystalline like properties. They do not emit light

by themselves, but the polarization phase can be changed by

electric fields [1]. A common circuit used in LCD to control

the electric fields is known as the thin film transistor (TFT)

[2]. Although TFT responds quickly, it takes some time for

the LC to change its phase. This latency is known as the fall

time if the signal is changing from high to low or the rise

time if the signal is changing from low to high. Since the fall

and rise time are not infinitesimal, the step response of an LC

exhibits a sample-hold characteristic (see Fig. 1).

Compared to LCD, traditional cathode ray tube (CRT)

displays do not have the sample-hold characteristic. When a

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
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Fig. 1. The signaling characteristics of a cathode ray tube (CRT) and a
liquid crystal display (LCD). CRT shows spontaneous response, whereas LCD
demonstrates a sample-hold response.

phosphor is exposed to electrons, it starts to emit light. As

soon as the electrons leave, the phosphor stops emitting light.

The latency of a phosphor is typically between 20µs to 50µs

[2], but the time interval between two frames is 16.67ms for

a 60 frame per second video sequence. In other words, the

latency of a phosphor becomes negligible compared to the

frame interval.

Due to the sample-hold characteristic of liquid crystals,

fast moving scenes displayed on the LCD are often seen

blurred. This phenomenon is known as the LCD motion blur.

We emphasize the word “motion” because if the scene is

stationary, LCD and CRT will give essentially the same degree

of sharpness.

A. Review of existing methods

There are a number of methods to reduce LCD motion blur.

Back light flashing presented by Fisekovi et al [3] is one of

the earliest methods. In this method, the back light (typically a

cold cathode fluorescent lamp, CCFL) is controlled by a pulse-

width modulation (PWM) [4]. Back light flashing reduces

motion blur but it also causes fluctuation in luminance. If the

flashing rate is not high enough, the luminance fluctuation can

be seen by human eyes, hence causing eye strains. Therefore,

in order to surpass the human eye limit (MPRT 1 5.7ms, [6]),

some advanced CCFL control methods are used, such as the

active lamp technique presented by Yoon et al [6].

Signal over-drive [7] is another commonly used method

to reduce motion blur. The motivation to over-drive a signal

is that the phase change of an LC is faster if the electric

field is stronger. This phenomenon is explained in [1] and

experimentally verified in [8]. Therefore, if the input signal

is changing from 0 to 200 (in gray scale), then instead of

sending a signal from 0 to 200, the over-drive circuit produces

a signal from 0 to 210 (or a different value, depending on the

1MPRT stands for motion picture response time. [5]
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circuit). Signal over-driving is often implemented using a look-

up table, and a particular value is determined by the intensity

change of a pixel. Image contents such as spatial and temporal

consistencies are not considered.

Frame rate up conversion (FRUC) schemes is the third class

of methods. The motivation of FRUC is that if the LC response

can be improved, then the frame rate of LCD should also be

increased. There are two major FRUC methods in the market:

one is black frame insertion as presented by Hong et al [9],

and the other one is full frame insertion presented in many

papers such as [10], [11], [12], [13], [14]. Fig. 2 illustrates

these two FRUC methods.

Fig. 2. Two commonly used frame rate up conversion method (FRUC). Top:
full frame insertion method by motion compensation (MC). Bottom: black
frame insertion method.

The last class of methods is the signal processing approach

in which the input signal is over-sharpened so that it can

compensate the motion blur caused by the LCD. Among all

the methods, the motion compensated inverse filtering (MCIF)

techniques presented by Klompenhouwer and Velthoven [15]

is the most popular one. MCIF first models motion blur

as a finite impulse response (FIR) filter. Then it finds an

approximated inverse of the FIR filter to over-sharpen the

image. MCIF can also be used together with frame rate

up conversion scheme, as presented in [16]. Another signal

processing approach is the deconvolution method proposed by

Har-Noy and Nguyen [17]. In [17], the authors show that the

deconvolution method gives better image quality than MCIF

in terms of peak signal to noise ratio (PSNR) and visual

subjective tests.

B. Objectives and Related Work

There are three objectives of this paper: modeling, simula-

tion and algorithm.

First of all, we present a mathematical model for the hold-

type LCD motion blur in the spatio-temporal domain. We

do not consider the problem in the frequency domain as

Klompenhouwer does in [15], because a video sequence is

intrinsically a space-time signal [18]. It is more intuitive to

study the motion blur in the spatio-temporal domain directly.

The modeling part of this paper is a generalization of [19].

In [19], Pan, Feng and Daly show a fundamental equation for

LCD motion blur modeling (Equation (7) of [19]). However,

they implicitly assume that the human eyes are able to track

objects perfectly. This is not true in general because our eyes

have only limited range of tracking speed (See Section III).

The same finding is reported by He et al [20]. However, He

et al do not explain the cause of such a limit and they do not

justify their MCIF design from a human visual system point of

view. In contrast, our study of the eye tracking limit is based

on literature of cognitive science, and verified using subjective

tests.

The second objective of this paper is to provide a tool

for the simulation of motion blur. A limitation of Pan’s

equation (Equation (7) of [19]) is that the integration has to be

performed in the temporal domain. To do so, the time step of

the integration should be small, for otherwise the integration

cannot be approximated using a finite sum. Since the frame

rate of a video sequence is fixed, in order to make the time step

small, we need to interpolate intermediate frames. Temporal

interpolation is time consuming: If the time step is 1/10 of

the time interval between frames, then 10 intermediate frames

are needed. Therefore, the simulation of motion blur will be

difficult unless there is an alternative method, which will be

discussed in Section II.

The spatio-temporal equivalence has been used extensively

in the literature but not proved. For example, Kurita [21]

used the spatio-temporal equivalence to improve LCD image

quality; Becker used the spatio- temporal equivalence to show

the relation between blur edge width (BEW) and blur edge

time (BET) for back light scanning [4]; Tourancheau used the

spatio- temporal equivalence to compare four commercially

available LCD TVs [22]; Klompenhouwer showed the relation

between BEW and frequency response of the blur operation

(known as the temporal MTF) [23]. Yet, none of these papers

attempted to prove the spatio-temporal equivalence rigorously.

The most relevant paper in proving the spatio-temporal

equivalence is [24]. Klompenhouwer drew a connection be-

tween the spatial and temporal aperture in a somewhat differ-

ent - and very elegant - manner. However, a precise numerical

approximation scheme for evaluating the continuous time

integration in the discrete spatial domain is not pursued. Also,

Klompenhouwer’s paper is focused on the unit step input

signal (which is a one-dimensional signal), whereas our work

focuses on the general video signals.

The third objective of this paper is to propose a deconvo-

lution algorithm based on the spatio-temporal equivalence.

A limitation of Klompenhouwer and Velthoven’s MCIF [15]

is that the MCIF cannot take into account of the spatial

and temporal consistencies. Spatial consistency means that a

pixel should have a value similar to its neighbors, unless it

is along an edge in an image. Temporal consistency means

that a pixel value should not change abruptly along the time

axis, for otherwise it will be seen as flickering artifacts.

In this paper, we use a spatial regularization function to

penalize variations in the spatial domain caused by noise.

The l1 normed regularization function used in our method is

able to suppress the noise while preserving the edges. We

also use a temporal regularization function to maintain the

smoothness of the images along the time axis. In [25], Yao

et al proposed similar regularization functions in the context

of coding artifacts removal. However, their problem setup is
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easier than ours because there is no blurring operators in their

problem.

C. Organization

The organization of this paper is as follows. In Section

II we prove the spatio-temporal equivalence. We show by

experiments that the spatial approximation to the temporal

integration is accurate. In Section III we present the findings of

human eye tracking limits. Visual subjective tests are used to

determine the optimal length of the FIR motion blur filter. In

Section IV we present the proposed algorithm. Comparisons

with MCIF and Lucy-Richardson algorithm are discusses.

II. SPATIO-TEMPORAL EQUIVALENCE

A. Review of LCD motion blur model

For completeness, we provide a brief introduction to the

LCD motion blur model. Most of the material presented in

this subsection is due to Pan, Feng and Daly [19].

Let Ic(x, y, t) be a frame sampled at time t and suppose

Ic(x, y, t) has a motion vector (vx, vy). Let hD(t) be the step

response of the display, where the subscript D can either be

CRT or LCD. By Pan, Feng and Daly [19], the image shown

on the display is

Is(x, y, t) =

∫

∞

−∞

hD(τ)Ic(x+vx(t−τ), y+vy(t−τ), t−τ)dτ.
(1)

An implicit assumption used in [19] is that the human eye

tracking system is perfect, meaning that we can track any

motion at any speed. Based on this, the motion compensated

image formed on the retina becomes

Im(x, y, t) = Is(x − vxt, y − vyt, t) [perfect eye tracking]

=

∫

∞

−∞

hD(τ)Ic(x− vxτ, y − vyτ, t− τ)dτ. (2)

Now assume that there is no low pass filtering of the HVS,

then the observed signal becomes

Io(x, y, y) =

∫

∞

−∞

hD(τ)Ic(x− vxτ, y − vyτ, t− τ)dτ. (3)

To facilitate the discussion of this paper, we focus on the

hold-type LCD. In this case, the step response of LCD is given

by a boxcar signal, that is hLCD(t) = 1/T for 0 ≤ t ≤ T
and = 0 for otherwise. With this setup, the image shown by

an LCD is

ILCD
o (x, y, t) =

1

T

∫ T

0

Ic(x− vxτ, y − vyτ, t− τ)dτ. (4)

B. Proof of Spatio-Temporal Equivalence

The integral in Equation (4) can be evaluated by performing

an integration over time 0 ≤ t ≤ T . However, for a digitized

version of the signal Ic(x, y, t), there is no information be-

tween two consecutive frames. Therefore, it is never possible

to compute the integral exactly. To alleviate this issue, an

approximation scheme must be used. In the followings, we

discuss a spatio-temporal equivalence that allows us to approx-

imate the temporal integration (4) by a spatial integration. But

before we discuss the main theorem, we would like to provide

some intuitive arguments.

Fig. 3 shows a video sequence. When integrating (4), we are

essentially taking an average over the pixel values at a fixed

position but at different time instants. Since all frames are

highly correlated to each other (assume that there is no abrupt

motions), we can approximate the average over different time

instants as a spatial average over the pixel’s neighborhoods.

In this sense we can transform the temporal average into a

spatial average problem.

x

y

t

Pixel at (x0, y0)

t = 0

t = 1

t = 3

t = 2

Temporal weighted average

Spatial weighted average

Fig. 3. Illustration spatio-temporal equivalence. To evaluate the
integral in Equation (4), we first fix a position (x0, y0) and consider
the pixel values at different times t = 0, . . . , 3. The average is taken
over the time, so it is the average across the four marked pixels on
the right hand side. However, since these four frames are identical to
each other (after motion compensation), we can evaluate the temporal
average by averaging four adjacent pixels (in spatial domain).

Definition 1. Given the velocities (vx, vy) and the sample-

hold period T , we let K ≫ max{vxT, vyT } be an integer

multiple of vxT and vyT , and define two sequences

Sx =

{

k, s.t.
kvxT

K
is an integer, where k is an integer

}

,

Sy =

{

k, s.t.
kvyT

K
is an integer, where k is an integer

}

.

Define S = Sort{Sx,Sy} = {k, s.t. k is taken from

Sx and Sy and k is sorted in an acending order}.
Define the weights h(i, j) using the following algorithm:

For every sk ∈ S = {0, s1, . . . , sP },
• If sk ∈ Sx, then i← i+1, and h(i, j) = (sk−sk−1)/K ,

• If sk ∈ Sy , then j ← j+1, and h(i, j) = (sk−sk−1)/K ,

• h(0, 0) = s1.

Definition 1 is used to characterize the discrete running

index and count the repeated indices, which will become

clearer when we prove the theorem. As a quick exam-

ple, consider vxT = 3, vyT = 4, and K = 1200.

Using Definition 1, we have Sx = {0, 400, 800, 1200}
and Sy = {0, 300, 400, 600, 900, 1200}. If we concatenate

these two sequences and sort them, then we have S =
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{0, 300, 400, 600, 800, 900, 1200}. Thus, entries of h(i, j) are

h(0, 0) = 300/1200 = 1/4,

h(0, 1) = (400− 300)/1200 = 1/12

h(1, 0) = (600− 400)/1200 = 1/6

...
...

h(2, 3) = (1200− 900)/1200 = 1/4.

Theorem 1. Assume that Ic(x, y, t) ≈ Ic(x, y, t+δt) for δt <
T . Let T be the sample-hold period of the liquid crystal, K ≫
max{vxT, vyT } be an integer multiple of vxT and vyT . Also,

let M and N be the largest integer smaller than vxT
K−1

K and

vyT
K−1

K respectively, that is

M =

⌊

vxT
K − 1

K

⌋

and N =

⌊

vyT
K − 1

K

⌋

,

where ⌊·⌋ is the floor operator. Then the integral (4) can be

evaluated as

ILCD
o (x, y, t) =

1

T

∫ T

0

Ic(x− vxτ, y − vyτ, t− τ)dτ

≈
M
∑

i=0

N
∑

j=0

Ic(x− i, y − j, t)h(i, j), (5)

where h(i, j) is defined in Definition 1.

Proof: We first explain the assumption that Ic(x, y, t) ≈
Ic(x, y, t + δt) if δt < T . Digital video is a sequence of

temporally sampled images of a continuous scene. Unless the

scene contains extremely high frequency components such as a

checkerboard pattern, typically the correlation between frames

is high. Since no intermediate image is captured between two

consecutive frames, we assume that Ic(x, y, t) ≈ Ic(x, y, t +
δt) if δt < T . Other assumptions about the intermediate

images are also possible, such as a linear translation from

frame Ic(x, y, t) to Ic(x, y, t + T ). But for simplicity we

assume that Ic(x, y, t) holds until the next sample arrives.

Using this assumption we have

ILCD
o (x, y, t) =

1

T

∫ T

0

Ic(x− vxτ, y − vyτ, t− τ)dτ

≈ 1

T

∫ T

0

Ic(x− vxτ, y − vyτ, t)dτ. (6)

Let K ≫ max{vxT, vyT } be an integer multiple of vxT and

vyT . Also, we let the finite difference interval be ∆τ = T
K .

Then the integral in (6) can be approximated by a finite sum

ILCD
o (x, y, t) ≈ 1

T

∫ T

0

Ic(x− vxτ, y − vyτ, t)dτ

≈ 1

T

K−1
∑

k=0

Ic(x− vxk∆τ, y − vyk∆τ, t)∆τ

=
1

K

K−1
∑

k=0

Ic

(

x− k
vxT

K
, y − k

vyT

K
, t

)

. (7)

Now assume that Ic(x, y, t) is a digital image at a particular

time t. Since the image is composed of a finite number of

pixels and each pixel has a finite size, we have Ic(x, y, t) =

Ic(x +∆x, y +∆y, t) if |∆x| < 1 and |∆y| < 1. Therefore,

the above sum can be partitioned into groups as

ILCD
o (x, y, t) =

1

K

K−1
∑

k=0

Ic

(

x− k
vxT

K
, y − k

vyT

K
, t

)

=
1

K

K−1
∑

k=0

Ic

(

x−
⌊

k
vxT

K

⌋

, y −
⌊

k
vyT

K

⌋

, t

)

=
1

K

[

s1−1
∑

k=0

Ic(x, y, t) +

s2−1
∑

k=s1

Ic(x− i1k, y − j1k, t) + . . .

+

sP
∑

k=sP−1

Ic(x− iP−1, k, y − jP−1, k, t)
]

.

where S = {s1, . . . , sP } is defined by Definition 1. In each

term
sp+1−1
∑

k=sp

Ic(x − ipk, y − jpk, t), the indices ipk (similarly

for jpk) are given by

ipk =

{

⌊

k vxT
K

⌋

, if sp ∈ Sx,
0, otherwise.

Using the definition of h(i, j) in Definition 1, we can further

simplify the above expression as

ILCD
o (x, y, t)

≈ 1

K

[

s1−1
∑

k=0

Ic(x, y, t) +

s2−1
∑

k=s1

Ic(x− i1k, y − j1k, t) + . . .

+

sP
∑

k=sP−1

Ic(x− iP−1, k, y − jP−1, k, t)
]

=

M
∑

i=0

N
∑

j=0

Ic(x− i, y − j, t)h(i, j)

where M =
⌊

vxT
K−1

K

⌋

and N =
⌊

vyT
K−1

K

⌋

.

As explained before, the importance of Theorem 1 is that

the temporal problem is transformed into a spatial problem.

Therefore, the temporal motion blur can now be treated as

spatial blur problem.

C. Example

To illustrate the meaning of the parameters in Theorem 1,

we show an example. Suppose that there is a diagonal motion

of vx = 180 pixel/sec and vy = 180 pixel/sec, and let us

assume that the LCD has a sample-hold period of T = 1/60
seconds. Since max{vxT, vyT } = 3, we may define K = 6
(K and is an integer multiple of max{vxT, vyT }). Let

k = 0, 1, 2, 3, 4, 5, then i = 0, 1, 2 and j = 0, 1, 2 (See

Definition 1), M = 2 and N = 2.

We define Sx = {0, 2, 4, 6} and Sy = {0, 2, 4, 6}. Con-

catenating and sorting Sx and Sy yields S = {0, 2, 4, 6}.
Therefore,

• h(0, 0) = (2− 0)/6 = 1/3,

• h(1, 1) = (4− 2)/6 = 1/3,

• h(2, 2) = (6− 4)/6 = 1/3,
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and h(i, j) = 0 for otherwise.

Thus the observed LCD signal can then be computed as

ILCD
o (x, y, t) ≈

M
∑

i=0

N
∑

j=0

Ic(x− i, y − j, t)h(i, j)

= Ic(x, y, t)h(0, 0) + Ic(x− 1, y − 1, t)h(1, 1) + . . .

+ Ic(x− 2, y − 2, t)h(2, 2)

=
1

3
[Ic(x, y, t) + Ic(x− 1, y − 1, t) + Ic(x− 2, y − 2, t)].

D. Discussion

There are some observations regarding Theorem 1.

First, Theorem 1 shows that although the perceived LCD

blur is a temporal average, it can be approximated by a spatial

average.

Second, the skewness of h(i, j) is determined by the direc-

tion of the motion. If vx = vy (as in our example), then h(i, j)
becomes diagonal; If vx = 0, then h(i, j) becomes vertical; If

vy = 0, then h(i, j) becomes horizontal. In these three special

cases, all the non-zero entries of h(i, j) are identical. If the

motion direction is not horizontal, vertical or diagonal, then

an entry of h(i, j) is larger if the distance between the line

along the motion direction and (i, j) is closer.

Third, magnitude of the motion determines the length of the

filter h(i, j), hence the blurriness of the perceived image. If

there is no motion, then h(i, j) = 1 and so there will be no

blur. However, if the motion is large, then h(i, j) will be long

and so the averaging effect will be strong.

Fourth, compared to a 60Hz LCD monitor, a 240Hz LCD

monitor shows better perceptual quality because it refreshes 4

times faster than a 60Hz monitor. This effect can be reflected

by reducing the sample-hold period T and hence the length

of the filter h(i, j).

E. Numerical Implementation of Theorem 1

Algorithm 1 Compute h(i, j) and ILCD
o (x, y, t)

Fix a time instant t, and LCD decay time T .

Step 1: Use motion estimation algorithm to detect (vx, vy).

Step 2: Define weights h(i, j) according to Definition 1.

Step 3: Set h(i, j) = 0, if i > L or j > L for some L (to

be discussed in Section III).

Step 4: Compute ILCD
o (x, y, t) using via discrete convolu-

tion in Equation (5).

Algorithm 1 is a pseudocode for numerical implementation

of Theorem 1. The algorithm consists of four steps. In the

first step, motion vectors are computed using methods such as

full search, three step search [26], directional methods [27],

or hybrid methods [28]. The second step is to define the blur

kernel h(i, j) according to definition (1). Note that each h(i, j)
is defined locally, meaning that one motion vector defines

one h(i, j). If there is a collection of motion vectors, then

correspondingly there will be a collection of h(i, j). In step 3,

h(i, j) is limited to a finite length and width for modeling the

eye tracking property, which will be discussed in Section III.

Last, the output can be computed via a discrete convolution

shown in Equation (5).

F. Comparison between Spatial and Temporal Integration

To verify Theorem 1, we compare the temporal integration

(Equation (4)) and spatial integration (Equation (5)) using

simulations. Our simulation methodology follows from [29],

where the authors show that the simulation is a good substitute

for a comprehensive experiment to measure liquid crystals

response.

Fig. 4 shows four simulation results 2. For each video

sequence, two consecutive frames are collected, and the

relative motion is computed using a full search algorithm

[26]. 10 motion compensated frames are inserted via standard

H.264 motion compensation algorithm. This is to simulate a

continuous time signal. The temporal integration is calculated

as the average of the 10 motion compensated frames.

To measure the difference between spatial integration and

the temporal integration, PSNR values are computed. As

shown, on average the PSNR is higher than 40dB, which

implies a small difference between the two methods. How-

ever, the computing time using the spatial approximation is

significantly shorter than the temporal integration (we used a

10× frame rate up conversion by linear interpolation).

TABLE I
COMPARISON BETWEEN SPATIAL INTEGRATION AND TEMPORAL

INTEGRATION. MAXIMUM MV REFERS TO THE MAXIMUM MOTION

VECTOR IN THE IMAGE. PSNR MEASURES THE DIFFERENCE BETWEEN

THE SPATIAL INTEGRATION TO THE TEMPORAL INTEGRATION. HIGHER

PSNR IMPLIES SMALLER DIFFERENCE.

Image Size Maximum MV PSNR

A 200 × 200 4.35 42.45dB

B 640 × 480 3.71 41.34dB

C 320 × 240 7.23 41.10dB

D 300 × 600 10 40.81dB

III. EYE MOVEMENT LIMIT

In section II, we assume that our eye tracking system is

perfect, i.e., we can track moving objects at any speed. This

assumption makes the derivation simpler, but it is not true

in reality. A more realistic model is that our eyes have a

speed limit. We provide supports to this argument, through

the literature in cognitive science and visual subjective tests.

A. Eye Tracking

In Rayner’s review [30] on eye tracking system, he mentions

that when we look at a scene, our eyes are rapidly moving.

The rapid movement is known as the saccades, which can be

as high as 500 degrees per second. However, at such a high

speed we can hardly see any visual content. This phenomenon

is known as the saccade suppression [31], [32]. So most of

the images perceived are obtained during a period of time

(typically about 200-300 ms) between saccades. This period

2Complete set of videos are available online at http://videoprocessing.ucsd.
edu/∼stanleychan
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A B C D

Fig. 4. Simulation results of spatial and temporal integration. Top row: original input image; middle row: simulated blur using spatial integration; bottom
row: simulated blur using temporal integration.

is known as the fixation. If an object is moving quickly, then

the duration of fixation is shortened, and hence the perceptual

quality reduces. Therefore, even if our eyes may be able to

track an object, we may not be able to see what it is.

The relation between object speed and perceived sharpness

can be concluded from the following findings.

1) Westerink and Teunissen [33] conducted two experi-

ments about the relation between perceptual sharpness

and the picture speed. In their first experiment, they

asked the viewers to track a moving image with their

heads stay at a fixed position (referred to as the fixation

condition). The conclusion is that the perceived sharp-

ness drops to a minimum score when picture speed is

beyond 5 deg/s (See Fig. 4 of [33]). A similar conclusion

can also be drawn from [34].

2) In the second experiment by Westerink and Teunissen

[33], viewers were allowed to move their heads (referred

to as the pursuit condition). The conclusion is that the

perceived sharpness drops to a minimum score when

picture speed is beyond 35 deg/s (See Fig. 6 of [33]).

3) Bonse [35] studied a mathematical model for temporal

subsampling. They mentioned that there is a maximum

eye tracking velocity of 5 to 50 deg/s, which had been

experimentally justified by Miller and Ludvigh [36].

4) Glenn and Glenn [37] studied the discrimination of hu-

man eyes on televised moving images of high resolution

(300-line) and low resolution (150-line). Their results

show that it is harder for human eye to discriminate

high resolution from low resolution images if the speed

increases.

5) Gegenfurtner [38] studied the relation between pursuit

eye movement and perceptual performance. The viewers

were asked to track a moving image of speed 4 deg/s.

Results show that the recorded the eye velocities are

ranged between 3 deg/s to 4.5 deg/s.

The conclusion of these findings is that when picture

motion increases, the perceptual sharpness decreases. In some

experiments, the maximum picture speed is found to be 5

deg/s for fixation condition, and 35 deg/s for pursuit condition.

Beyond this threshold, our eyes are unable to capture visual

content from the image.

B. LCD Model with Eye Tracking

The existence of the maximum eye tracking speed implies

that the LCD model has to be written as

Im(x, y, t) = Is(x− uxt, y − uyt, t)

=

∫ T

0

hD(τ)Ic(x− vxτ − (ux − vx)t, . . .

y − vyτ − (ux − vx)t, t− τ)dτ.

where ux and uy are the eye tracking speed. If the picture

speed is low, then our eyes are able to capture the visual

content, and hence ux = vx and uy = vy . However, if the

picture speed is beyond the threshold, then the difference

(ux − vx)τ accounts for the images that we cannot see.

Consequently, we apply this observation to design inverse

filters to reduce LCD motion blur. Previous efforts in inverse

filter design for LCD motion blur can be found in [15],

[17] and [39]. In these papers, the inverse filter is designed

according to the estimated point spread function h(i, j). If

h(i, j) has a narrow frequency support, then noise in an image

will be amplified by the inverse filter.

Due to the presence of the maximum eye tracking speed,

we know that fast moving objects cannot be seen clearly.

Therefore, a natural question is that whether it is necessary

to construct a very long h(i, j) and let its inverse filter to
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L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

Fig. 5. Video 2 Stockholm. The sequence is processed using [39], with different values of L.

introduce flickering artifacts. To this end, we find that it is

more appropriate to limit the size of h(i, j) as

h(i, j) =

{

h(i, j), if i ≤ L and j ≤ L,

0 else ,

where L denotes the maximum number of pixels along the

horizontal and vertical direction. For example, L = 4 means

that the size of h(i, j) is at most 4× 4 pixels.

The exact value of L is difficult to determine as it depends

on a number of factors such as the conditions of 5 deg/s for

fixation and 35 deg/s for pursuit. To compromise this issue we

seek a method to estimate a value of L so that it can be used

for our deblurring algorithm, which will be described next.

C. Experiments

To determine the maximum length of the filter h(i, j) we

performed a visual subjective test.

Three video sequences are used in this test, where each

video sequence consists of a global horizontal motion. The

motion vectors are determined by full search algorithm and

the point spread function h(i, j) is found using Algorithm 1.

In order to determine the maximum length L for h(i, j), we

truncate h(i, j) using 6 different values of L. For each L, we

over-sharpen the video sequence by using the optimization

approach presented in [39]. The optimization problem is

solved using a conjugate gradient algorithm (LSQR [40]), with

damping constant λ = 1e−1. Maximum number of iterations

is set to be 100, and tolerance level is set to be 1e−6.

Fig. 5 shows the results. When L increases, it can be

observed that more artifacts are introduced. To quantify the

amount of artifacts, we calculate the average total variation

around neighborhood pixels:

e =
( 1

MN

∑

i,j

|f(i+ 1, j)− f(i, j)|2

+ |f(i, j + 1)− f(i, j)|2
)1/2

, (8)

where f(i, j) is the image under consideration, and M and N
are the number of columns and rows of f(i, j).

The visual subjective test procedure follows from ITU-R

BT. 1082, Section 8 [41]. 18 human viewers were invited to

the experiment. For each of the three video sequences, there

are six levels of the maximum lengths (L = 1, . . . , 6). L = 1
means that h(i, j) is a delta function, which in turn implies

that there is no inverse filtering. L = 6 means that h(i, j)
has a size of 6 × 6, and so there is a substantial inverse

filtering. Each time the viewers were presented a reference

TABLE II
AVERAGE TOTAL VARIATION ERROR (DEFINED IN EQUATION (8)) AROUND

ADJACENT PIXELS.

Video 1 Video 2 Video 3
L Shield Stockholm Black White

1 0.0465 0.0546 0.0478
2 0.0589 0.0764 0.0504
3 0.0655 0.0895 0.0533
4 0.0896 0.1205 0.0608
5 0.1010 0.1279 0.0581
6 0.1146 0.1412 0.0620

TABLE III
THE SUBJECTIVE TESTS TO DETERMINE THE MAXIMUM LENGTH L.

Subjective Test to determine optimal L

Video 1 Video 2 Video 3
Shield Stockholm Black White

mean 4.19 3.89 3.39

std 0.67 0.65 0.90

and a processed video sequence simultaneously. They were

asked to tell whether the processed one showed any distracting

artifacts. If they replied no, then L would be increased until

the level such that noise became appealing. The videos were

played on a PC with 2.8GHz CPU, 8GB DDR2 RAM, ATI

Radeon 2600 XT 512MB video card. The video sequences

were uncompressed, played at 60 frames per second.

The mean and variance of L is shown in Table III. It can

be observed that if we limit the size of the point spread

function h(i, j) to 4× 4 (on average) and apply the conjugate

gradient algorithm to deblur the image, viewers can perceive

the maximum degree of sharpness before they notice artifacts.

A limitation of this experiment is that it relies on the

formulation in [39]. If other formulations such as the spatial

and temporal regularization functions (See Section IV) are

used, the maximum length L can possibly be increased as

artifacts can be suppressed more using these methods.

IV. DEBLURRING ALGORITHM

The objective of this section is to propose a deblurring

algorithm for LCD motion blur reduction.

A. Optimization Formulation

First, by spatio-temporal equivalence (Equation (5)), we

know that the observed (blurred) image is related to the

original (sharp) image by a linear convolution. Therefore, we

can apply the standard imaging model (see, e.g., [42]) to model

the image formation as

g = Hf + η, (9)
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(a) (b) (c)

Fig. 6. Comparison between various regularization functions. (a) Solution obtained by minimizing ‖Hf − g‖2
2

. (b) Solution obtained by Tikhonov

‖Hf − g‖2
2
+ λ‖Dxf‖22, where λ = 0.0005. (c) Solution obtained by minimizing the proposed method ‖Hf − g‖2

2
+ λ‖Dxf‖1, where λ = 0.0015.

where f = vec[f(x, y)] and g = vec[g(x, y)] are vectors that

denote the sharp image f(x, y) and the observed (blurred)

images g(x, y) respectively. Here, vec(·) is the vectorization

operator which stacks an image into a long column vector

according to the lexicographical order. H is a block circulant

matrix denoting the blurring (convolution) operator, and η is

an additive noise term.

The LCD deblurring problem may be formulated within

an optimization framework by considering the least-squares

minimization problem

minimize
f

‖Hf − g‖22
subject to 0 ≤ f ≤ 1. (10)

where ‖ · ‖2 denotes the l2-norm. The choice of l2 norm is

based on the assumption that the noise η is Gaussian. The

bounds on the optimization variable f is to ensure that a pixel

value does not exceed the range of [0, 255], or [0, 1] in the

normalized scale.

Problem (10) is ill-posed because the operator H often has

a large condition number. Therefore, in the presence of noise,

solving (10) may lead to undesirable images. To resolve this

issue, the standard method is to introduce a regularization

function Rreg(f) and solve

minimize
f

‖Hf − g‖22 + λRreg(f)

subject to 0 ≤ f ≤ 1. (11)

In statistics, the regularization is also known as the prior

information about the image. The constant λ is a regularization

parameter that weights the objective function relative to the

regularization term.

B. Spatial Regularization

The spatial regularization function is defined by the gra-

dients of the image. Specifically, we define the directional

gradient operators Dx, Dy , Dd1 and Dd2 as

Dxf = vec[f(x+ 1, y)− f(x, y)]

Dyf = vec[f(x, y + 1)− f(x, y)]

Dd1f = vec[f(x− 1, y + 1)− f(x, y)]

Dd2f = vec[f(x+ 1, y + 1)− f(x, y)],

where f = vec[f(x, y)] is the unknown image, Dx and

Dy represent the directional derivative operators along the

horizontal and vertical directions respectively, and Dd1
and

Dd2
represent the directional derivative operators along the

direction from top left to bottom right and from top right to

bottom left respectively. The transposes of these operators are

DT
x f = vec[f(x− 1, y)− f(x, y)]

DT
y f = vec[f(x, y − 1)− f(x, y)]

DT
d1f = vec[f(x+ 1, y − 1)− f(x, y)]

DT
d2f = vec[f(x− 1, y − 1)− f(x, y)].

The spatial regularization function is defined as

RS(f) =
∑

i

‖Dif‖1, (12)

where the subscript i ∈ {x, y, d1, d2} represents the direction.

This spatial regularization is a special case of the bilateral total

variation introduced by Farsiu, Robinson, Elad and Milanfar

[43], [44], [45]. It can also be considered as an l1 approxi-

mation to the conventional total variation (TV) regularization

introduced by Rudin, Osher and Fatemi [46]. In [25], Yao

et al used a regularization function similar to ours for the

application of removing coding artifacts.

The advantage of using the proposed spatial regulariza-

tion over the conventional Tikhonov regularization R(f) =
‖Dxf‖2+‖Dyf‖2 is that Tikhonov regularization cannot pre-

serve sharp edges. Fig. 6 shows some comparisons between the

proposed spatial regularization and Tikhonov regularization.

Detailed discussions can be found in [47] and [48].
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C. Temporal Regularization

Although the spatial regularization function can be applied

to each frame of a video individually, the temporal consistency

of the video is not guaranteed. Temporal consistency describes

whether two adjacent frames have a smooth transition. If a

pixel has a sudden increase/decrease in brightness along the

time axis, then it is said to have temporal inconsistency. As

an illustration, two consecutive frames taken from a real video

are shown in Fig. 7. Note that pixels around the edges of the

window have different intensities in the two adjacent frames,

although they are at the same location.

(a) (b)

(c) (d)

Fig. 7. Two consecutive frames. (a)-(b): No temporal regularization. (c)-(d):
With temporal regularization.

To enhance the temporal consistency we introduce a reg-

ularization function along the temporal direction. A similar

approach was previously used by Yao et al for denoising [25].

The temporal regularization function is defined as

RT (f) = ‖f −Mf0‖22,

where M is a geometric wrap (i.e., motion compensation), and

f0 is the solution of the previous frame. The interpretation

of RT (f) is that the current solution should be close to

the previous solution after motion compensation. Thus, by

minimizing RT (f), we can reduce the temporal noise.

The effectiveness of the proposed temporal regularization

function can be seen in Fig. 7. Fig. 7(a)-(b) show two consec-

utive frames without temporal regularization, where as 7(c)-(d)

show two consecutive frames with temporal regularization. It

can be observed that the transition of pixel values is smoother

in (c)-(d) than (a)-(b).

D. Convolution Operator H

The convolution operator H is constructed based on the

motion vectors. If the motion is global, then H corresponds

to a spatially invariant point spread function. In this case, H

is a block-circulant-with-circulant-block (BCCB) matrix [49],

and it can be diagonalized by Fourier Transforms [50]. As a

result, computation of the matrix-vector product Hf can be

performed in O(n logn) operations, where n is the number of

pixels.

For general video sequences, the motion is not global and

so H does not correspond to a spatially invariant point spread

function. In the worst case where every pixel has a different

motion, each pixel will have a different point spread function.

Because of that, H do not have the BCCB structure and so

it cannot be diagonalized by Fourier Transforms. Hence, to

compute the matrix-vector multiplication Hf , one has to do it

in the spatial domain directly. The complexity is in the order

of O(nk), where n is the number of image pixels, and k is

the number of pixels of the largest point spread function.

Since the motion is not global in general, many existing

algorithms cannot be used as they assume H to a BCCB

matrix. These methods include the half quadratic penalty

methods by Huang et al [51], Wang et al [52], Geman, Yang

and Reynolds [53], [54] and Yao et al [25], the interior point

method by Nesterov [55] and the projected gradients methods

by Chambolle [56]. In the followings, we present a method

that supports both BCCB matrices and general matrices.

E. Subgradient Projection Algorithm

The overall optimization problem is

minimize
f

‖Hf − g‖22 + λ
∑

i

‖Dif‖1 + γ‖f −Mf0‖22

subject to 0 ≤ f ≤ 1, (13)

where λ and γ are two regularization parameters.

Subgradient projection is a variation of the steepest descent

algorithm. Given the kth iterate, the algorithm updates the

k + 1th iterate by

fk+1 = fk − αk∇
(

‖Hfk − g‖22 + . . .

+ λ
∑

i

‖Dif
k‖1 + γ‖fk −Mf0‖22

)

,

where αk is the step size, and ∇(·) is the gradient operator.

Since the l1 term is not differentiable, we consider its subgra-

dient instead of the gradient. The (sub)gradients of individual

terms are

∇
(

‖Hf − g‖22
)

= 2HT (Hf − g) (14)

∇
(

∑

i

‖Dif‖1
)

=
∑

i

DT
i sgn(Dif) (15)

∇
(

‖f −Mf0‖22
)

= 2(f −Mf0), (16)

where sgn(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0.

The simple bound constraints can be handled by projecting

out-of-bound components to their closest bounds. In other

words, we set

[f ]i =

{

1, if [f ]i ≥ 1,

0, if [f ]i ≤ 0.
(17)

where [·]i denotes the ith component of f .
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The step size is chosen to satisfy the “square summable but

not summable” rule (see, e.g., [57], [58], [59]):

∞
∑

k=0

α2
k <∞ and

∞
∑

k=0

αk =∞.

In our problem, we choose αk = M/(M + k), for some

maximum number of iterations M , typically M = 1000.

We also implemented the Armijo line search algorithm [60],

[61]. For fixed constants 0 < η < 1, and 0 < ρ < 1, we

let Φ(f) = ‖Hf − g‖22 + λ
∑

i ‖Dif‖1 + γ‖f −Mf0‖22. If

Φ(fk+1) − Φ(fk) ≤ αη‖∇Φ(fk))‖22, then the step size α is

reduced by α← ρα, until the condition is satisfied.

In theory, subgradient projection algorithm with the square

summable rule has provable convergence, [57], [59]. But in

practice, if we allow the algorithm to terminate early, then the

Armijo line search algorithm often gives better PSNR than

square summable rule.

Algorithm 2 shows the pseudo-code for our projected sub-

gradient algorithm using the Armijo line search.

Algorithm 2 Subgradient Projection Algorithm

Set λ and γ (Typically, λ ≈ 0.0015, γ ≈ 0.1).

Set initial step size αk = 1.

Initialize variables.

while k ≤ kmax do

Compute the gradients ∇Φ(f) as defined in (14) - (16).

Armijo Line Search to determine step size α.

Update fk+1 = fk − α∇Φ(fk)

fk+1 =

{

1 if fk+1 > 1

0 if fk+1 < 0
k ← k + 1

end while

Regarding the regularization parameters λ and γ, Bertsekas

[58] mentioned that these parameters can never be known

prior to solving the problem. There are some methods to

estimate the parameters, such as generalized cross validations

by Nguyen, Golub and Milanfar [62], or the L− curve criteria

discussed in Hansen’s book [63]. But these methods are

not guaranteed to work for the non-differentiable l1 term.

Therefore, in this paper we test the images with a sequence of

λ and γ, and choose the ones that balance PSNR, run time, and

perceptual quality. In a fully automated settings, an updating

strategy based on a non-reference metric [64] can be used.

F. Experiments

In this section we compare the performance of the pro-

posed spatio-temporal deblurring algorithm versus existing

algorithms. In particular we measure three quantities of the

deblurred signal.

1) Mean Square Error: The first quantity is the peak signal

to noise ratio (PSNR), which is defined as

PSNR = 10 log10
1

MSE
,

Here, MSE is the mean square error, defined as

MSE =
1

MN
‖Hf − g‖22,

where M , N are the number of rows and columns of the

image, and f is the minimization solution. PSNR measures the

solution fidelity, and higher PSNR implies that the difference

between Hf and g is smaller.

2) Spatial Consistency: Spatial consistency is a qualitative

measurement of the deviation between neighborhood pixels.

To quantify the spatial consistency we define

ES =
∑

i

‖Dif‖1.

This quantity measures the total variation of the solution f . If

ES is large, then it is likely that f is noisy.

3) Temporal Consistency: Temporal consistency describes

the smoothness of the video along the time axis. Given two

consecutive frames ft+1, ft, and the motion vector field, we

define

ET = ‖ft+1 −Mtft‖22,

where Mt is a geometric warping operator such that Mtft is

the motion compensated frame with respect to ft+1.

4) Results: We ran two experiments, both are panning

camera scenes. The videos have global horizontal motion blur,

with some small local motions.

The specification of the video is as follows: The size is

640× 480 and it is stored as a sequence of 8-bit gray scaled

bit maps so each pixel has a dynamic range of 256 levels. For

better numerical stability we normalize the image by dividing

the pixel values by 255. The video is supposed to be played

at 60 fps, with 300 frames in total. We ran our experiment

on a PC with AMD Dual Core 3 GHz, 8GB RAM, Radeon-

HD2600XT graphics card, Windows XP-64 OS.

The results are shown in Fig. 8 and 9. The upper row of

the figures show the signals synthesized by different methods,

namely MCIF [15], LR [17] and the proposed method. As

shown, the synthesized signals of MCIF and LR contain a lot

of noise. These noise are often inconsistent in time, and so

when the images are moving, viewers will see flickering arti-

facts. In contrast, the proposed method controls the amount of

noise, both spatially and temporally. Flickering is suppressed

significantly.

The lower row of the figures show the simulated images that

an viewer would see. We emphasize that these are simulated

images because the actual images formed on the retina of a

viewer are never accessible. To simulate the observed signal,

we apply H to the synthesized signal f .

Numerical results using PSNR, ES and ET are given in

Table IV. Although the proposed method does not have a

PSNR as high as Lucy Richardson, it shows a 2dB improve-

ment to the original input images. More important observations

are the spatial consistency and the temporal consistency: the

proposed method yields significantly lower error than the other

two methods.

It should be noted that although our regularization functions

has a better performance than existing methods in preserving

edges, suppressing noise and enhancing temporal consistency,

restoration of texture areas is still challenging. In areas where

the magnitude of texture gradient is comparable to the mag-

nitude of noise gradient, our current algorithm has limited
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(a) Original (b) MCIF (c) LR (d) Proposed

Fig. 8. Experiment 1: The upper row shows the synthesized signal that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal. (a)
Original Signal (b) Signal synthesized by MCIF [15], (c) Signal synthesized by Lucy Richardson [17], (d) Signal synthesized by proposed method.

(a) Original (b) MCIF (c) LR (d) Proposed

Fig. 9. Experiment 2: The upper row shows the synthesized signal that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal. (a)
Original Signal (b) Signal synthesized by MCIF [15], (c) Signal synthesized by Lucy Richardson [17], (d) Signal synthesized by proposed method.

TABLE IV
COMPARISONS BETWEEN MCIF, LUCY RICHARDSON AND PROPOSED METHOD

Signal to Noise Ratio Spatial Error Temporal Error

Video Name Methods PSNR (dB)
∑

i
‖Dif‖1 ‖ft+1 −Mtft‖22

Original 34.43 4.8286× 103 3.2969 × 101

Stockholm MC Inverse Filter [15] 34.357 9.8488× 103 4.3412 × 102

Lucy Richardson [17] 40.35 1.0914× 104 5.5423 × 103

Proposed Method 36.38 4.1443× 103 3.3400 × 101

Original 36.879 3.586 × 103 7.0169 × 102

Shield MC Inverse Filter [15] 36.943 7.432 × 103 1.275 × 103

Lucy Richardson [17] 48.241 7.825 × 103 1.111 × 103

Proposed Method 38.540 3.437 × 103 8.224 × 102
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performance in removing the noise while keeping the texture.

Our future research is to develop methods to restore texture

areas.

G. Visual Subjective Test

We ran a visual subjective test to verify our results. The

subjective test is based on the single stimulus non-categorical

judgement method described in ITU-R BT.500-11 [65]. In this

test, 11 human viewers were invited to compare the MCIF, LR

and the proposed method on the picture quality improvement

of Stockholm and Shield sequences. For each test, viewers

were asked to compare the original and the processed sequence

on separate sides of the screen. Viewers then gave a score on

a continuous scale to indicate whether one image was “much

better”, “better”, “slightly better” or “the same” as the other

image. We used a 24-inch Samsung 730B LCD with 8ms

response time.

Table V shows the average and standard deviation of the

subjective test scores. In the table, the average scores are all

positive, meaning that the method improves the perceptual

quality when compared to the original sequence. Additionally,

magnitude of the average scores using the proposed method

is the highest among the three methods, which implies that

viewers ranked the proposed method as the best result among

the three methods.

TABLE V
SUBJECTIVE TEST RESULTS OF MCIF, LR AND THE PROPOSED METHOD

average score (µ) std dev (σ)

Stockholm MCIF 0.818 1.055
Lucy Richardson 1.54 0.415

Proposed 1.86 0.674

Shield MCIF 0.845 0.884
Lucy Richardson 0.954 0.723

Proposed 1.091 0.701

In order to test the statistical significance of the perceptual

testing results we employ the students t-test, where the null

hypothesis is that the average score is µ = 0, i.e., the proposed

algorithm has no positive effect over the original sequence. If

we let the confidence interval α = 0.01, then the rejection

region is µ ≥ 2.359σ/
√
N , where µ is the average score, σ

is the standard deviation, and N is the number of viewers. It

can be shown that the value 2.359σ/
√
N of MCIF, LR and the

proposed method are 0.6406, 0.2528, 0.4105 respectively for

Stockholm, and 0.5384, 0.4404, 0.4270 respectively for Shield.

Since all µ are greater than these figures, we conclude that all

three methods give improvements to the original sequence .

In addition, it can be shown that for the proposed method,

the gap between the average score and the lower bound is

larger than that of the other two methods. This implies that

statistically the proposed method gives a more positive effect

to the original sequence than the other two methods.

V. CONCLUSION

This paper has three contributions. First, we proved the

equivalence between temporal and spatial integration. The

equivalence allows us to simulate the LCD blur efficiently in

the spatial domain, instead of a time consuming integration in

the temporal domain. Experiments verified that computing the

LCD motion blur in the spatial domain is as accurate as com-

puting it in the temporal domain. Second, we studied the limit

of eye movement speed. Based on a number of papers in the

cognitive science literature, we showed that perceptual quality

reduces as picture motion increases. Beyond certain speed

limit, human eyes cannot retrieve any useful content from

the picture. Consequently, we showed the size of the LCD

motion blur filter should be limited, and the optimal size can be

determined using a visual subjective test. Third, we proposed

an optimization framework to pre-process the LCD signal so

that it can compensate the motion blur. In order to maintain the

spatial and temporal consistencies, we introduced an l1-norm

regularization function on the directional derivatives and a l2-

norm regularization function on difference between current

and previous solution. Experimental results showed that our

proposed method has relatively higher PSNR, lower spatial

and temporal error than state-of-art algorithms. Future research

directions include the robustness of the algorithm towards

the errors introduced by motion estimation algorithms, and

methods to restore texture areas.
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