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LCD Motion Blur:
Modeling, Analysis and Algorithm

Stanley H. Chan, Student Member, IEEE, and Truong Q. Nguyen, Fellow, IEEE.

Abstract—Liquid crystal display (LCD) devices are well known
for their slow responses due to the physical limitations of liquid
crystals. Therefore, fast moving objects in a scene are often
perceived as blurred. This effect is known as the LCD motion
blur. In order to reduce LCD motion blur, an accurate LCD
model and an efficient deblurring algorithm are needed. However,
existing LCD motion blur models are insufficient to reflect
the limitation of human eye tracking system. Also, the spatio-
temporal equivalence in LCD motion blur models has not been
proven directly in the discrete two-dimensional spatial domain,
although it is widely used.

There are three main contributions of this paper: modeling,
analysis and algorithm. First, a comprehensive LCD motion blur
model is presented, in which human eye tracking limits are taken
into consideration. Second, a complete analysis of spatio-temporal
equivalence are provided and verified using real video sequences.
Third, an LCD motion blur reduction algorithm is proposed.
The proposed algorithm solves an [;-norm regularized least-
squares minimization problem using a subgradient projection
method. Numerical results show that the proposed algorithm
gives higher PSNR, lower temporal error and lower spatial error
than motion compensated inverse filtering (MCIF) and Lucy-
Richardson deconvolution algorithm, which are two state-of-the-
art LCD deblurring algorithms.

Index Terms—Liquid crystal displays, LCD, motion blur,
human visual system, subgradient projection, spatial consistency,
temporal consistency

I. INTRODUCTION

IQUID Crystal Display (LCD) devices are known to
have slow responses due to the physical limitations of
liquid crystals (LC). LC are organic fluids that exhibit both
liquid and crystalline like properties. They do not emit light
by themselves, but the polarization phase can be changed by
electric fields [1]. A common circuit used in LCD to control
the electric fields is known as the thin film transistor (TFT)
[2]. Although TFT responds quickly, it takes some time for
the LC to change its phase. This latency is known as the fall
time if the signal is changing from high to low or the rise
time if the signal is changing from low to high. Since the fall
and rise time are not infinitesimal, the step response of an LC
exhibits a sample-hold characteristic (see Fig. 1).
Compared to LCD, traditional cathode ray tube (CRT)
displays do not have the sample-hold characteristic. When a
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Fig. 1. The signaling characteristics of a cathode ray tube (CRT) and a
liquid crystal display (LCD). CRT shows spontaneous response, whereas LCD
demonstrates a sample-hold response.

phosphor is exposed to electrons, it starts to emit light. As
soon as the electrons leave, the phosphor stops emitting light.
The latency of a phosphor is typically between 20us to 50us
[2], but the time interval between two frames is 16.67ms for
a 60 frame per second video sequence. In other words, the
latency of a phosphor becomes negligible compared to the
frame interval.

Due to the sample-hold characteristic of liquid crystals,
fast moving scenes displayed on the LCD are often seen
blurred. This phenomenon is known as the LCD motion blur.
We emphasize the word “motion” because if the scene is
stationary, LCD and CRT will give essentially the same degree
of sharpness.

A. Review of existing methods

There are a number of methods to reduce LCD motion blur.
Back light flashing presented by Fisekovi et al [3] is one of
the earliest methods. In this method, the back light (typically a
cold cathode fluorescent lamp, CCFL) is controlled by a pulse-
width modulation (PWM) [4]. Back light flashing reduces
motion blur but it also causes fluctuation in luminance. If the
flashing rate is not high enough, the luminance fluctuation can
be seen by human eyes, hence causing eye strains. Therefore,
in order to surpass the human eye limit (MPRT 1'5.7ms, [6]),
some advanced CCFL control methods are used, such as the
active lamp technique presented by Yoon et al [6].

Signal over-drive [7] is another commonly used method
to reduce motion blur. The motivation to over-drive a signal
is that the phase change of an LC is faster if the electric
field is stronger. This phenomenon is explained in [1] and
experimentally verified in [8]. Therefore, if the input signal
is changing from O to 200 (in gray scale), then instead of
sending a signal from 0 to 200, the over-drive circuit produces
a signal from 0 to 210 (or a different value, depending on the

'MPRT stands for motion picture response time. [5]
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circuit). Signal over-driving is often implemented using a look-
up table, and a particular value is determined by the intensity
change of a pixel. Image contents such as spatial and temporal
consistencies are not considered.

Frame rate up conversion (FRUC) schemes is the third class
of methods. The motivation of FRUC is that if the LC response
can be improved, then the frame rate of LCD should also be
increased. There are two major FRUC methods in the market:
one is black frame insertion as presented by Hong et al [9],
and the other one is full frame insertion presented in many
papers such as [10], [11], [12], [13], [14]. Fig. 2 illustrates
these two FRUC methods.

MC Interpolation:

t1
reference ~-<y

frame t2 3
interpolated frame current frame

Trajectory

—\\\‘\E\\y ///mn

Black Data Insertion:

t
reference

3
frame b|a0|t(2 frame current frame

Fig. 2. Two commonly used frame rate up conversion method (FRUC). Top:
full frame insertion method by motion compensation (MC). Bottom: black
frame insertion method.

The last class of methods is the signal processing approach
in which the input signal is over-sharpened so that it can
compensate the motion blur caused by the LCD. Among all
the methods, the motion compensated inverse filtering (MCIF)
techniques presented by Klompenhouwer and Velthoven [15]
is the most popular one. MCIF first models motion blur
as a finite impulse response (FIR) filter. Then it finds an
approximated inverse of the FIR filter to over-sharpen the
image. MCIF can also be used together with frame rate
up conversion scheme, as presented in [16]. Another signal
processing approach is the deconvolution method proposed by
Har-Noy and Nguyen [17]. In [17], the authors show that the
deconvolution method gives better image quality than MCIF
in terms of peak signal to noise ratio (PSNR) and visual
subjective tests.

B. Objectives and Related Work

There are three objectives of this paper: modeling, simula-
tion and algorithm.

First of all, we present a mathematical model for the hold-
type LCD motion blur in the spatio-temporal domain. We
do not consider the problem in the frequency domain as
Klompenhouwer does in [15], because a video sequence is
intrinsically a space-time signal [18]. It is more intuitive to
study the motion blur in the spatio-temporal domain directly.

The modeling part of this paper is a generalization of [19].
In [19], Pan, Feng and Daly show a fundamental equation for
LCD motion blur modeling (Equation (7) of [19]). However,
they implicitly assume that the human eyes are able to track

objects perfectly. This is not true in general because our eyes
have only limited range of tracking speed (See Section III).
The same finding is reported by He et al [20]. However, He
et al do not explain the cause of such a limit and they do not
justify their MCIF design from a human visual system point of
view. In contrast, our study of the eye tracking limit is based
on literature of cognitive science, and verified using subjective
tests.

The second objective of this paper is to provide a tool
for the simulation of motion blur. A limitation of Pan’s
equation (Equation (7) of [19]) is that the integration has to be
performed in the temporal domain. To do so, the time step of
the integration should be small, for otherwise the integration
cannot be approximated using a finite sum. Since the frame
rate of a video sequence is fixed, in order to make the time step
small, we need to interpolate intermediate frames. Temporal
interpolation is time consuming: If the time step is 1/10 of
the time interval between frames, then 10 intermediate frames
are needed. Therefore, the simulation of motion blur will be
difficult unless there is an alternative method, which will be
discussed in Section II.

The spatio-temporal equivalence has been used extensively
in the literature but not proved. For example, Kurita [21]
used the spatio-temporal equivalence to improve LCD image
quality; Becker used the spatio- temporal equivalence to show
the relation between blur edge width (BEW) and blur edge
time (BET) for back light scanning [4]; Tourancheau used the
spatio- temporal equivalence to compare four commercially
available LCD TVs [22]; Klompenhouwer showed the relation
between BEW and frequency response of the blur operation
(known as the temporal MTF) [23]. Yet, none of these papers
attempted to prove the spatio-temporal equivalence rigorously.

The most relevant paper in proving the spatio-temporal
equivalence is [24]. Klompenhouwer drew a connection be-
tween the spatial and temporal aperture in a somewhat differ-
ent - and very elegant - manner. However, a precise numerical
approximation scheme for evaluating the continuous time
integration in the discrete spatial domain is not pursued. Also,
Klompenhouwer’s paper is focused on the unit step input
signal (which is a one-dimensional signal), whereas our work
focuses on the general video signals.

The third objective of this paper is to propose a deconvo-
lution algorithm based on the spatio-temporal equivalence.

A limitation of Klompenhouwer and Velthoven’s MCIF [15]
is that the MCIF cannot take into account of the spatial
and temporal consistencies. Spatial consistency means that a
pixel should have a value similar to its neighbors, unless it
is along an edge in an image. Temporal consistency means
that a pixel value should not change abruptly along the time
axis, for otherwise it will be seen as flickering artifacts.
In this paper, we use a spatial regularization function to
penalize variations in the spatial domain caused by noise.
The [; normed regularization function used in our method is
able to suppress the noise while preserving the edges. We
also use a temporal regularization function to maintain the
smoothness of the images along the time axis. In [25], Yao
et al proposed similar regularization functions in the context
of coding artifacts removal. However, their problem setup is
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easier than ours because there is no blurring operators in their
problem.

C. Organization

The organization of this paper is as follows. In Section
II we prove the spatio-temporal equivalence. We show by
experiments that the spatial approximation to the temporal
integration is accurate. In Section III we present the findings of
human eye tracking limits. Visual subjective tests are used to
determine the optimal length of the FIR motion blur filter. In
Section IV we present the proposed algorithm. Comparisons
with MCIF and Lucy-Richardson algorithm are discusses.

II. SPATIO-TEMPORAL EQUIVALENCE
A. Review of LCD motion blur model

For completeness, we provide a brief introduction to the
LCD motion blur model. Most of the material presented in
this subsection is due to Pan, Feng and Daly [19].

Let I.(x,y,t) be a frame sampled at time ¢ and suppose
I.(x,y,t) has a motion vector (vg, vy ). Let hp(t) be the step
response of the display, where the subscript D can either be
CRT or LCD. By Pan, Feng and Daly [19], the image shown
on the display is

Is(z,y,t) = /OO hp(T)I(z4vy(t—7), y+vy (t—7), t—7)dT.
o 1)

An implicit assumption used in [19] is that the human eye
tracking system is perfect, meaning that we can track any
motion at any speed. Based on this, the motion compensated
image formed on the retina becomes

In(z,y,t) = Is(x — vgt, y — vyt, )

= / hp(T)Ie(x — vpm,y —vy7, t — T)dT. (2)

— 00

[perfect eye tracking]

Now assume that there is no low pass filtering of the HVS,
then the observed signal becomes

I(z,y,y) = / hp(T)Ic(x — veT,y — vy7,t — T)d7. (3)

To facilitate the discussion of this paper, we focus on the
hold-type LCD. In this case, the step response of LCD is given
by a boxcar signal, that is hpop(t) = 1/T for 0 < ¢t < T
and = 0 for otherwise. With this setup, the image shown by
an LCD is

1 T
IOLCD(xayat) = T/ Ic(x_UmTay_vyTat_T)dT- 4)
0

B. Proof of Spatio-Temporal Equivalence

The integral in Equation (4) can be evaluated by performing
an integration over time 0 < ¢ < T'. However, for a digitized
version of the signal I.(z,y,t), there is no information be-
tween two consecutive frames. Therefore, it is never possible
to compute the integral exactly. To alleviate this issue, an
approximation scheme must be used. In the followings, we
discuss a spatio-temporal equivalence that allows us to approx-
imate the temporal integration (4) by a spatial integration. But

before we discuss the main theorem, we would like to provide
some intuitive arguments.

Fig. 3 shows a video sequence. When integrating (4), we are
essentially taking an average over the pixel values at a fixed
position but at different time instants. Since all frames are
highly correlated to each other (assume that there is no abrupt
motions), we can approximate the average over different time
instants as a spatial average over the pixel’s neighborhoods.
In this sense we can transform the temporal average into a
spatial average problem.

Pixel at (Xo, Yo)

t
£

Spatial weighted average

Temporal weighted average

Fig. 3.  Illustration spatio-temporal equivalence. To evaluate the
integral in Equation (4), we first fix a position (zo, yo) and consider
the pixel values at different times ¢ = 0, ..., 3. The average is taken
over the time, so it is the average across the four marked pixels on
the right hand side. However, since these four frames are identical to
each other (after motion compensation), we can evaluate the temporal
average by averaging four adjacent pixels (in spatial domain).

Definition 1. Given the velocities (vg,vy) and the sample-
hold period T, we let K > max{v,T,v,T} be an integer
multiple of v,’T and v,T, and define two sequences

kv, T
K

kv, T
S, =<k, st. —2
Yy { ) 8 K

Define S = Sort{S;,Sy} = {k, s.t. kis taken from

Sy and Sy and k is sorted in an acending order}.

S, = {k, s.t.

is an integer, where k is an integer} ,

is an integer, where k is an integer} .

Define the weights h(i, j) using the following algorithm:
For every s, € S ={0, s1,..., sp},

o If s, €S8,, theni < i+1, and h(i,j) = (s —sk-1)/K,
o Ifsp €8y, thenj < j+1, and h(i,j) = (sg —sk-1)/ K,
. h(0,0) = S1.

Definition 1 is used to characterize the discrete running
index and count the repeated indices, which will become
clearer when we prove the theorem. As a quick exam-
ple, consider v,T" = 3, v,T" = 4, and K = 1200.
Using Definition 1, we have S, = {0,400,800,1200}
and S, = {0,300,400,600,900,1200}. If we concatenate
these two sequences and sort them, then we have & =
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{0, 300, 400, 600, 800, 900, 1200}. Thus, entries of h(i,j) are
h(0,0) = 300/1200 = 1/4,

h(0,1) = (400 — 300)/1200 = 1/12
h(1,0) = (600 — 400)/1200 = 1/6
h(2, 3)' :'(1200 —900)/1200 = 1/4.

Theorem 1. Assume that I.(x,y,t) = I.(z,y,t+t) for it <
T. Let T be the sample-hold period of the liquid crystal, K >
max{v,T, v, T} be an integer multiple of v, T and v,/ T. Also,
let M and N be the largest integer smaller than UwT% and
vyT% respectively, that is

K-1 K-1
M = {UITTJ and N = LvyTTJ ,

where |-| is the floor operator. Then the integral (4) can be
evaluated as

1 T
IOLCD(‘Tuyat) = T/ Ic(x_UmTay_vyTut_T)dT
0

M N

~D D Ll

i=0 j=0

where h(i,j) is defined in Definition 1.

? y_]vt)h(lvj)7 (5)

Proof: We first explain the assumption that I.(z,y,t) ~
I.(z,y,t + ot) if 6t < T. Digital video is a sequence of
temporally sampled images of a continuous scene. Unless the
scene contains extremely high frequency components such as a
checkerboard pattern, typically the correlation between frames
is high. Since no intermediate image is captured between two
consecutive frames, we assume that I.(z,y,t) = I.(z,y,t +
dt) if 6t < T. Other assumptions about the intermediate
images are also possible, such as a linear translation from
frame I.(z,y,t) to I.(z,y,t + T). But for simplicity we
assume that I.(z,y,t) holds until the next sample arrives.

Using this assumption we have

1 T
I(f/CD(Iayvt):_/ Ic(x_UxT,y—UyT,t—T)dT
0

T
1 /T
QTA
Let K > max{v,T, v, T} be an integer multiple of v,7" and
v, T. Also, we let the finite difference interval be At = %
Then the integral in (6) can be approximated by a finite sum

vy T, t)dT. (6)

T — VT, Y —

1 T
IOLCD(:E,y,t) ~ —/ I(x —vaT,y — vyT, t)dr
0

T
| K=l
T IC (x — v kAT, y — vy kAT, ) AT
K- 1
1 v, T ’UyT

Now assume that I.(x,y,t) is a digital image at a particular
time ¢. Since the image is composed of a finite number of
pixels and each pixel has a finite size, we have I.(z,y,t) =

I.(x + Az,y + Ay, t) if |[Az| < 1 and |Ay| < 1. Therefore,
the above sum can be partitioned into groups as

T vy T
ILen( I. 2y — k=
2P (2, y,t Z W=k
K-1
1 A Vy T’
I — |kt
3 < { KJ’y { )
k:O
1 51—1 S2— 1
|: Ic CC ya ZI Zlkv jlkvt)+"'
k=0 k= S1
+ Z I(z —ip—1,k,y — jP—1,k t)]
k=sp_1
where S = {s1,...,sp} is defined by Definition 1. In each
Spr1—1
term Z I(x — ipk,s Y — Jpk,t), the indices i, (similarly

for jpi) are given by
o JkEL], if s, €8s,
lpk = .
0, otherwise.

Using the definition of h (i, j) in Definition 1, we can further
simplify the above expression as

I1FOP(2,y,1)
s1—1 s2—1
[ZI z,y,t ZIc(a?—im,y—jlk,t)Jr---
k:sl
+ Z I—ZP 1kay—jP—1,kat)}
k=sp_1
M N
AT 3D, 5)
i=0 j=0
where M = |0, T5| and N = |v, TEZL]. u

As explained before, the importance of Theorem 1 is that
the temporal problem is transformed into a spatial problem.
Therefore, the temporal motion blur can now be treated as
spatial blur problem.

C. Example

To illustrate the meaning of the parameters in Theorem 1,
we show an example. Suppose that there is a diagonal motion
of v, = 180 pixel/sec and v, = 180 pixel/sec, and let us
assume that the LCD has a sample-hold period of T' = 1/60
seconds. Since max{v,T,v,T} = 3, we may define K = 6
(K and is an integer multiple of max{v,T,v,T}). Let
k = 0,1,2,3,4,5, then ¢ = 0,1,2 and j = 0,1,2 (See
Definition 1), M =2 and N = 2.

We define S, = {0,2,4,6} and S, = {0,2,4,6}. Con-
catenating and sorting S, and S, yields S = {0,2,4,6}.
Therefore,

e h(0,0)=(2-0)/6=1/3,
e h(1,1)=(4—2)/6 =1/3,
e h(2,2)=(6—4)/6=1/3,
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and h(i,j) = 0 for otherwise.

Thus the observed LCD signal can then be computed as
M N
IXP @y, t) = Y Y Le(w — i,y — 5, 1)h(i, 5)
i=0 j=0
= I.(x,y,t)h(0,0) + I.(x — 1,y — 1,t)h(1,1) + ...
+I.(x— 2,y — 2,t)h(2,2)

1
= g[Ic(:C,y,t) +I(x—1y—1,t)+ I.(x — 2,y — 2,t)].

D. Discussion

There are some observations regarding Theorem 1.

First, Theorem 1 shows that although the perceived LCD
blur is a temporal average, it can be approximated by a spatial
average.

Second, the skewness of h(i, j) is determined by the direc-
tion of the motion. If v, = v, (as in our example), then h (¢, 5)
becomes diagonal; If v, = 0, then h(4, j) becomes vertical; If
vy = 0, then h(i, j) becomes horizontal. In these three special
cases, all the non-zero entries of h(i,j) are identical. If the
motion direction is not horizontal, vertical or diagonal, then
an entry of h(i,j) is larger if the distance between the line
along the motion direction and (i, j) is closer.

Third, magnitude of the motion determines the length of the
filter h(%,j), hence the blurriness of the perceived image. If
there is no motion, then h(i,j) = 1 and so there will be no
blur. However, if the motion is large, then h(4,j) will be long
and so the averaging effect will be strong.

Fourth, compared to a 60Hz LCD monitor, a 240Hz LCD
monitor shows better perceptual quality because it refreshes 4
times faster than a 60Hz monitor. This effect can be reflected
by reducing the sample-hold period 1" and hence the length
of the filter h(%, j).

E. Numerical Implementation of Theorem 1

Algorithm 1 Compute h(i,j) and IL€P (2, y,t)

Fix a time instant ¢, and LCD decay time 7.

Step 1: Use motion estimation algorithm to detect (v, vy).
Step 2: Define weights h(i, j) according to Definition 1.
Step 3: Set h(i,j) =0, if ¢ > L or j > L for some L (to
be discussed in Section III).

Step 4: Compute IXP(z,y, t) using via discrete convolu-

tion in Equation (5).

Algorithm 1 is a pseudocode for numerical implementation
of Theorem 1. The algorithm consists of four steps. In the
first step, motion vectors are computed using methods such as
full search, three step search [26], directional methods [27],
or hybrid methods [28]. The second step is to define the blur
kernel h(i, j) according to definition (1). Note that each h(3, j)
is defined locally, meaning that one motion vector defines
one h(i,j). If there is a collection of motion vectors, then
correspondingly there will be a collection of h(i, j). In step 3,
h(%, ) is limited to a finite length and width for modeling the

eye tracking property, which will be discussed in Section III.
Last, the output can be computed via a discrete convolution
shown in Equation (5).

F. Comparison between Spatial and Temporal Integration

To verify Theorem 1, we compare the temporal integration
(Equation (4)) and spatial integration (Equation (5)) using
simulations. Our simulation methodology follows from [29],
where the authors show that the simulation is a good substitute
for a comprehensive experiment to measure liquid crystals
response.

Fig. 4 shows four simulation results 2. For each video
sequence, two consecutive frames are collected, and the
relative motion is computed using a full search algorithm
[26]. 10 motion compensated frames are inserted via standard
H.264 motion compensation algorithm. This is to simulate a
continuous time signal. The temporal integration is calculated
as the average of the 10 motion compensated frames.

To measure the difference between spatial integration and
the temporal integration, PSNR values are computed. As
shown, on average the PSNR is higher than 40dB, which
implies a small difference between the two methods. How-
ever, the computing time using the spatial approximation is
significantly shorter than the temporal integration (we used a
10x frame rate up conversion by linear interpolation).

TABLE I
COMPARISON BETWEEN SPATIAL INTEGRATION AND TEMPORAL
INTEGRATION. MAXIMUM MYV REFERS TO THE MAXIMUM MOTION
VECTOR IN THE IMAGE. PSNR MEASURES THE DIFFERENCE BETWEEN
THE SPATIAL INTEGRATION TO THE TEMPORAL INTEGRATION. HIGHER
PSNR IMPLIES SMALLER DIFFERENCE.

Image Size Maximum MV PSNR
A 200 x 200 4.35 42.45dB
B 640 x 480 3.71 41.34dB
C 320 x 240 7.23 41.10dB
D 300 x 600 10 40.81dB

III. EYE MOVEMENT LIMIT

In section II, we assume that our eye tracking system is
perfect, i.e., we can track moving objects at any speed. This
assumption makes the derivation simpler, but it is not true
in reality. A more realistic model is that our eyes have a
speed limit. We provide supports to this argument, through
the literature in cognitive science and visual subjective tests.

A. Eye Tracking

In Rayner’s review [30] on eye tracking system, he mentions
that when we look at a scene, our eyes are rapidly moving.
The rapid movement is known as the saccades, which can be
as high as 500 degrees per second. However, at such a high
speed we can hardly see any visual content. This phenomenon
is known as the saccade suppression [31], [32]. So most of
the images perceived are obtained during a period of time
(typically about 200-300 ms) between saccades. This period

2Complete set of videos are available online at http://videoprocessing.ucsd.
edu/~stanleychan
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Fig. 4.
row: simulated blur using temporal integration.

is known as the fixation. If an object is moving quickly, then
the duration of fixation is shortened, and hence the perceptual
quality reduces. Therefore, even if our eyes may be able to
track an object, we may not be able to see what it is.

The relation between object speed and perceived sharpness
can be concluded from the following findings.

1) Westerink and Teunissen [33] conducted two experi-
ments about the relation between perceptual sharpness
and the picture speed. In their first experiment, they
asked the viewers to track a moving image with their
heads stay at a fixed position (referred to as the fixation
condition). The conclusion is that the perceived sharp-
ness drops to a minimum score when picture speed is
beyond 5 deg/s (See Fig. 4 of [33]). A similar conclusion
can also be drawn from [34].

2) In the second experiment by Westerink and Teunissen
[33], viewers were allowed to move their heads (referred
to as the pursuit condition). The conclusion is that the
perceived sharpness drops to a minimum score when
picture speed is beyond 35 deg/s (See Fig. 6 of [33]).

3) Bonse [35] studied a mathematical model for temporal
subsampling. They mentioned that there is a maximum
eye tracking velocity of 5 to 50 deg/s, which had been
experimentally justified by Miller and Ludvigh [36].

4) Glenn and Glenn [37] studied the discrimination of hu-
man eyes on televised moving images of high resolution
(300-line) and low resolution (150-line). Their results
show that it is harder for human eye to discriminate
high resolution from low resolution images if the speed
increases.

5) Gegenfurtner [38] studied the relation between pursuit
eye movement and perceptual performance. The viewers
were asked to track a moving image of speed 4 deg/s.
Results show that the recorded the eye velocities are

384 frames

192 frames
96 frames
64 frames

Simulation results of spatial and temporal integration. Top row: original input image; middle row: simulated blur using spatial integration; bottom

ranged between 3 deg/s to 4.5 deg/s.

The conclusion of these findings is that when picture
motion increases, the perceptual sharpness decreases. In some
experiments, the maximum picture speed is found to be 5
deg/s for fixation condition, and 35 deg/s for pursuit condition.
Beyond this threshold, our eyes are unable to capture visual
content from the image.

B. LCD Model with Eye Tracking

The existence of the maximum eye tracking speed implies
that the LCD model has to be written as

I (z,y,t) = Ls(z — ugt,y — uyt,t)

T
= / hp () (x — v, — (ug — )t . ..
0
Y — vyT — (Ug — vg)t, t — T)dT.

where u, and u, are the eye tracking speed. If the picture
speed is low, then our eyes are able to capture the visual
content, and hence u, = v, and u, = v,. However, if the
picture speed is beyond the threshold, then the difference
(ug — v, )T accounts for the images that we cannot see.

Consequently, we apply this observation to design inverse
filters to reduce LCD motion blur. Previous efforts in inverse
filter design for LCD motion blur can be found in [15],
[17] and [39]. In these papers, the inverse filter is designed
according to the estimated point spread function h(i,j). If
h(i, ) has a narrow frequency support, then noise in an image
will be amplified by the inverse filter.

Due to the presence of the maximum eye tracking speed,
we know that fast moving objects cannot be seen clearly.
Therefore, a natural question is that whether it is necessary
to construct a very long h(i,j) and let its inverse filter to
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L=2

Video 2 Stockholm. The sequence is processed using [39], with different values of L.

L=1 L=3

Fig. 5.

introduce flickering artifacts. To this end, we find that it is
more appropriate to limit the size of h(i, ) as

L h(i,j), ifi<Landj<L,
Wi, j) = {0 else

where L denotes the maximum number of pixels along the
horizontal and vertical direction. For example, L = 4 means
that the size of h(7,j) is at most 4 x 4 pixels.

The exact value of L is difficult to determine as it depends
on a number of factors such as the conditions of 5 deg/s for
fixation and 35 deg/s for pursuit. To compromise this issue we
seek a method to estimate a value of L so that it can be used
for our deblurring algorithm, which will be described next.

C. Experiments

To determine the maximum length of the filter h(Z,j) we
performed a visual subjective test.

Three video sequences are used in this test, where each
video sequence consists of a global horizontal motion. The
motion vectors are determined by full search algorithm and
the point spread function h(i, j) is found using Algorithm 1.
In order to determine the maximum length L for h(s, ), we
truncate h(i,7) using 6 different values of L. For each L, we
over-sharpen the video sequence by using the optimization
approach presented in [39]. The optimization problem is
solved using a conjugate gradient algorithm (LSQR [40]), with
damping constant A = le~!. Maximum number of iterations
is set to be 100, and tolerance level is set to be 1e~6.

Fig. 5 shows the results. When L increases, it can be
observed that more artifacts are introduced. To quantify the
amount of artifacts, we calculate the average total variation
around neighborhood pixels:

o= (ﬁzjum 1,5) = £, 5) 2

" 1/2
1+ 1) = FGDE) ®)

where f(i,7) is the image under consideration, and M and N
are the number of columns and rows of f(,j).

The visual subjective test procedure follows from ITU-R
BT. 1082, Section 8 [41]. 18 human viewers were invited to
the experiment. For each of the three video sequences, there
are six levels of the maximum lengths (L =1,...,6). L=1
means that h(Z,j) is a delta function, which in turn implies
that there is no inverse filtering. L = 6 means that h(3,j)
has a size of 6 x 6, and so there is a substantial inverse
filtering. Each time the viewers were presented a reference

TABLE II
AVERAGE TOTAL VARIATION ERROR (DEFINED IN EQUATION (8)) AROUND
ADJACENT PIXELS.

Video 1 Video 2 Video 3
L Shield Stockholm | Black White
1 0.0465 0.0546 0.0478
2 0.0589 0.0764 0.0504
3 0.0655 0.0895 0.0533
4 0.0896 0.1205 0.0608
5 0.1010 0.1279 0.0581
6 0.1146 0.1412 0.0620
TABLE III

THE SUBJECTIVE TESTS TO DETERMINE THE MAXIMUM LENGTH L.

Subjective Test to determine optimal L
Video 1 Video 2 Video 3
Shield Stockholm | Black White
mean 4.19 3.89 3.39
std 0.67 0.65 0.90

and a processed video sequence simultaneously. They were
asked to tell whether the processed one showed any distracting
artifacts. If they replied no, then L would be increased until
the level such that noise became appealing. The videos were
played on a PC with 2.8GHz CPU, 8GB DDR2 RAM, ATI
Radeon 2600 XT 512MB video card. The video sequences
were uncompressed, played at 60 frames per second.

The mean and variance of L is shown in Table III. It can
be observed that if we limit the size of the point spread
function h(i, j) to 4 x 4 (on average) and apply the conjugate
gradient algorithm to deblur the image, viewers can perceive
the maximum degree of sharpness before they notice artifacts.

A limitation of this experiment is that it relies on the
formulation in [39]. If other formulations such as the spatial
and temporal regularization functions (See Section IV) are
used, the maximum length L can possibly be increased as
artifacts can be suppressed more using these methods.

IV. DEBLURRING ALGORITHM

The objective of this section is to propose a deblurring
algorithm for LCD motion blur reduction.

A. Optimization Formulation

First, by spatio-temporal equivalence (Equation (5)), we
know that the observed (blurred) image is related to the
original (sharp) image by a linear convolution. Therefore, we
can apply the standard imaging model (see, e.g., [42]) to model
the image formation as

g = Hf + 1, )
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Fig. 6.

(b)

Comparison between various regularization functions. (a) Solution obtained by minimizing ||Hf — g||2. (b) Solution obtained by Tikhonov

||IHf — g||2 + A||Dxf||3, where A = 0.0005. (c) Solution obtained by minimizing the proposed method ||Hf — g||Z + A||Dxf||1, where A = 0.0015.

where f = vec[f(z,y)] and g = vec[g(z, y)] are vectors that
denote the sharp image f(z,y) and the observed (blurred)
images g(x,y) respectively. Here, vec(+) is the vectorization
operator which stacks an image into a long column vector
according to the lexicographical order. H is a block circulant
matrix denoting the blurring (convolution) operator, and 7 is
an additive noise term.

The LCD deblurring problem may be formulated within
an optimization framework by considering the least-squares
minimization problem

minifmize |Hf — g3

subjectto 0<f <1. (10)
where || - ||2 denotes the ls-norm. The choice of I norm is
based on the assumption that the noise n is Gaussian. The
bounds on the optimization variable f is to ensure that a pixel
value does not exceed the range of [0, 255], or [0, 1] in the
normalized scale.

Problem (10) is ill-posed because the operator H often has
a large condition number. Therefore, in the presence of noise,
solving (10) may lead to undesirable images. To resolve this
issue, the standard method is to introduce a regularization
function Ryeg(f) and solve

minimize | Hf — g|3 + ARreg(f)

0<f<l. (11)

subject to

In statistics, the regularization is also known as the prior
information about the image. The constant A is a regularization
parameter that weights the objective function relative to the
regularization term.

B. Spatial Regularization

The spatial regularization function is defined by the gra-
dients of the image. Specifically, we define the directional

gradient operators D, D,, Dgy; and Dy as

D,f = vec[f(z + 1,y) — f(z,y)]
Dyf = vec[f(z,y + 1) — f(z,y)]
D f = vec[f(z — 1,y + 1) — f(x,y)]
Dgof =vec[f(z+ 1,y+1) — f(z,y)],

where f = vec[f(z,y)] is the unknown image, D, and
D, represent the directional derivative operators along the
horizontal and vertical directions respectively, and Dg4, and
Dy, represent the directional derivative operators along the
direction from top left to bottom right and from top right to
bottom left respectively. The transposes of these operators are

DIt = vec[f(z —1,y) — f(x,9)]
Dgf = vec[f(z,y — 1) — f(z,v)]
D5 f =vec[f(z+ 1,y — 1) — f(z,y)]
Djof = vec[f(z — 1,y — 1) = f(z,y)].

The spatial regularization function is defined as

Rs(f) = ) |Dif|1, (12)

where the subscript i € {x, y, d1, da} represents the direction.
This spatial regularization is a special case of the bilateral total
variation introduced by Farsiu, Robinson, Elad and Milanfar
[43], [44], [45]. It can also be considered as an [y approxi-
mation to the conventional total variation (TV) regularization
introduced by Rudin, Osher and Fatemi [46]. In [25], Yao
et al used a regularization function similar to ours for the
application of removing coding artifacts.

The advantage of using the proposed spatial regulariza-
tion over the conventional Tikhonov regularization R(f) =
|D,f[|? + ||D,f]|? is that Tikhonov regularization cannot pre-
serve sharp edges. Fig. 6 shows some comparisons between the
proposed spatial regularization and Tikhonov regularization.
Detailed discussions can be found in [47] and [48].
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C. Temporal Regularization

Although the spatial regularization function can be applied
to each frame of a video individually, the temporal consistency
of the video is not guaranteed. Temporal consistency describes
whether two adjacent frames have a smooth transition. If a
pixel has a sudden increase/decrease in brightness along the
time axis, then it is said to have temporal inconsistency. As
an illustration, two consecutive frames taken from a real video
are shown in Fig. 7. Note that pixels around the edges of the
window have different intensities in the two adjacent frames,
although they are at the same location.

(a) (b)

(©) (d)
Fig. 7. Two consecutive frames. (a)-(b): No temporal regularization. (c)-(d):
With temporal regularization.

To enhance the temporal consistency we introduce a reg-
ularization function along the temporal direction. A similar
approach was previously used by Yao et al for denoising [25].
The temporal regularization function is defined as

Ry (f) = [|f — Mfy |3,

where M is a geometric wrap (i.e., motion compensation), and
fo is the solution of the previous frame. The interpretation
of Rr(f) is that the current solution should be close to
the previous solution after motion compensation. Thus, by
minimizing Rz (f), we can reduce the temporal noise.

The effectiveness of the proposed temporal regularization
function can be seen in Fig. 7. Fig. 7(a)-(b) show two consec-
utive frames without temporal regularization, where as 7(c)-(d)
show two consecutive frames with temporal regularization. It
can be observed that the transition of pixel values is smoother
in (c)-(d) than (a)-(b).

D. Convolution Operator H

The convolution operator H is constructed based on the
motion vectors. If the motion is global, then H corresponds
to a spatially invariant point spread function. In this case, H
is a block-circulant-with-circulant-block (BCCB) matrix [49],
and it can be diagonalized by Fourier Transforms [50]. As a

result, computation of the matrix-vector product Hf can be
performed in O(n logn) operations, where n is the number of
pixels.

For general video sequences, the motion is not global and
so H does not correspond to a spatially invariant point spread
function. In the worst case where every pixel has a different
motion, each pixel will have a different point spread function.
Because of that, H do not have the BCCB structure and so
it cannot be diagonalized by Fourier Transforms. Hence, to
compute the matrix-vector multiplication Hf, one has to do it
in the spatial domain directly. The complexity is in the order
of O(nk), where n is the number of image pixels, and & is
the number of pixels of the largest point spread function.

Since the motion is not global in general, many existing
algorithms cannot be used as they assume H to a BCCB
matrix. These methods include the half quadratic penalty
methods by Huang et al [51], Wang et al [52], Geman, Yang
and Reynolds [53], [54] and Yao et al [25], the interior point
method by Nesterov [55] and the projected gradients methods
by Chambolle [56]. In the followings, we present a method
that supports both BCCB matrices and general matrices.

E. Subgradient Projection Algorithm

The overall optimization problem is
minimize | Hf — gl + A IDfll1 + vIIf — Mf|3

subjectto 0 <f <1, (13)

where \ and ~ are two regularization parameters.

Subgradient projection is a variation of the steepest descent
algorithm. Given the k" iterate, the algorithm updates the
k + 1t" iterate by

frrl = ph akV(Hka —gli+...
A IDE 1 + £ — ME3),
where oy, is the step size, and V(-) is the gradient operator.
Since the [ term is not differentiable, we consider its subgra-

dient instead of the gradient. The (sub)gradients of individual
terms are

vV (|Bf - g|3) = 2H" (Hf — g) (14)
v (Z IDifl1 | =) D/'sgn(D;f) (15)
V (|If — Mfy||3) = 2(f — Mfy), (16)

where sgn(z) =1if £ >0, —1if x <0 and 0 if z = 0.

The simple bound constraints can be handled by projecting
out-of-bound components to their closest bounds. In other
words, we set

if [£]; > 1, an
if [f]; < 0.

where [-]; denotes the i** component of f.
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The step size is chosen to satisfy the “square summable but
not summable” rule (see, e.g., [57], [58], [59]):

(o) (o)
E a3 < oo and E ay = 00.
k=0 k=0

In our problem, we choose o = M/(M + k), for some
maximum number of iterations M, typically M = 1000.

We also implemented the Armijo line search algorithm [60],
[61]. For fixed constants 0 < nn < 1, and 0 < p < 1, we
let ®(F) = [[HF — gll3 + AY, [Diflls +~[If — M[3. 1f
O(fFH1) — d(fF) < an||Ve(f¥))||3, then the step size a is
reduced by a < pa, until the condition is satisfied.

In theory, subgradient projection algorithm with the square
summable rule has provable convergence, [57], [59]. But in
practice, if we allow the algorithm to terminate early, then the
Armijo line search algorithm often gives better PSNR than
square summable rule.

Algorithm 2 shows the pseudo-code for our projected sub-
gradient algorithm using the Armijo line search.

Algorithm 2 Subgradient Projection Algorithm
Set A and v (Typically, A = 0.0015, v ~ 0.1).
Set initial step size oy = 1.

Initialize variables.

while £ < k4, do
Compute the gradients V®(f) as defined in (14) - (16).
Armijo Line Search to determine step size a.
Update f*+1 = fF — aVO(fF)

1if fAr >

0 if ffl <o
k< k+1

end while

fFRHL —

Regarding the regularization parameters A and -y, Bertsekas
[58] mentioned that these parameters can never be known
prior to solving the problem. There are some methods to
estimate the parameters, such as generalized cross validations
by Nguyen, Golub and Milanfar [62], or the L— curve criteria
discussed in Hansen’s book [63]. But these methods are
not guaranteed to work for the non-differentiable [; term.
Therefore, in this paper we test the images with a sequence of
A and , and choose the ones that balance PSNR, run time, and
perceptual quality. In a fully automated settings, an updating
strategy based on a non-reference metric [64] can be used.

F. Experiments

In this section we compare the performance of the pro-
posed spatio-temporal deblurring algorithm versus existing
algorithms. In particular we measure three quantities of the
deblurred signal.

1) Mean Square Error: The first quantity is the peak signal
to noise ratio (PSNR), which is defined as

1
PSNR =101 —_
0810 MSE’
Here, MSE is the mean square error, defined as

1 2
MSE = mHHf —gllz,

10

where M, N are the number of rows and columns of the
image, and f is the minimization solution. PSNR measures the
solution fidelity, and higher PSNR implies that the difference
between Hf and g is smaller.

2) Spatial Consistency: Spatial consistency is a qualitative
measurement of the deviation between neighborhood pixels.
To quantify the spatial consistency we define

Es =) |Dif]s.

This quantity measures the total variation of the solution f. If
E is large, then it is likely that f is noisy.

3) Temporal Consistency: Temporal consistency describes
the smoothness of the video along the time axis. Given two
consecutive frames f; 1, f;, and the motion vector field, we
define

Er = |fis1 — M]3,

where M, is a geometric warping operator such that M.,f; is
the motion compensated frame with respect to f;; ;.

4) Results: We ran two experiments, both are panning
camera scenes. The videos have global horizontal motion blur,
with some small local motions.

The specification of the video is as follows: The size is
640 x 480 and it is stored as a sequence of 8-bit gray scaled
bit maps so each pixel has a dynamic range of 256 levels. For
better numerical stability we normalize the image by dividing
the pixel values by 255. The video is supposed to be played
at 60 fps, with 300 frames in total. We ran our experiment
on a PC with AMD Dual Core 3 GHz, 8GB RAM, Radeon-
HD2600XT graphics card, Windows XP-64 OS.

The results are shown in Fig. 8 and 9. The upper row of
the figures show the signals synthesized by different methods,
namely MCIF [15], LR [17] and the proposed method. As
shown, the synthesized signals of MCIF and LR contain a lot
of noise. These noise are often inconsistent in time, and so
when the images are moving, viewers will see flickering arti-
facts. In contrast, the proposed method controls the amount of
noise, both spatially and temporally. Flickering is suppressed
significantly.

The lower row of the figures show the simulated images that
an viewer would see. We emphasize that these are simulated
images because the actual images formed on the retina of a
viewer are never accessible. To simulate the observed signal,
we apply H to the synthesized signal f.

Numerical results using PSNR, Eg and Er are given in
Table IV. Although the proposed method does not have a
PSNR as high as Lucy Richardson, it shows a 2dB improve-
ment to the original input images. More important observations
are the spatial consistency and the temporal consistency: the
proposed method yields significantly lower error than the other
two methods.

It should be noted that although our regularization functions
has a better performance than existing methods in preserving
edges, suppressing noise and enhancing temporal consistency,
restoration of texture areas is still challenging. In areas where
the magnitude of texture gradient is comparable to the mag-
nitude of noise gradient, our current algorithm has limited
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Fig. 8. Experiment 1: The upper row shows the synthesized signal that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal. (a)

Original Signal (b) Signal synthesized by MCIF [15], (c) Signal synthesized by Lucy Richardson [17], (d) Signal synthesized by proposed method.

(a) Original

(b) MCIF

Fig. 9. Experiment 2: The upper row shows the synthesized signal that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal. (a)
Original Signal (b) Signal synthesized by MCIF [15], (c) Signal synthesized by Lucy Richardson [17], (d) Signal synthesized by proposed method.

(c) LR

TABLE IV

(d) Proposed

COMPARISONS BETWEEN MCIF, LUCY RICHARDSON AND PROPOSED METHOD

Signal to Noise Ratio Spatial Error Temporal Error

Video Name Methods PSNR (dB) SO Daflly | Ifer1 — Mefi|2
Original 34.43 4.8286 x 103 3.2969 x 107
Stockholm | MC Inverse Filter [15] 34.357 9.8488 x 103 4.3412 x 102
Lucy Richardson [17] 40.35 1.0914 x 104 5.5423 x 103
Proposed Method 36.38 4.1443 x 103 3.3400 x 101
Original 36.879 3.586 x 103 7.0169 x 102
Shield MC Inverse Filter [15] 36.943 7.432 x 103 1.275 x 103
Lucy Richardson [17] 48.241 7.825 x 103 1.111 x 108
Proposed Method 38.540 3.437 x 103 8.224 x 102
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performance in removing the noise while keeping the texture.
Our future research is to develop methods to restore texture
areas.

G. Visual Subjective Test

We ran a visual subjective test to verify our results. The
subjective test is based on the single stimulus non-categorical
judgement method described in ITU-R BT.500-11 [65]. In this
test, 11 human viewers were invited to compare the MCIF, LR
and the proposed method on the picture quality improvement
of Stockholm and Shield sequences. For each test, viewers
were asked to compare the original and the processed sequence
on separate sides of the screen. Viewers then gave a score on
a continuous scale to indicate whether one image was “much
better”, “better”, “slightly better” or “the same” as the other
image. We used a 24-inch Samsung 730B LCD with 8ms
response time.

Table V shows the average and standard deviation of the
subjective test scores. In the table, the average scores are all
positive, meaning that the method improves the perceptual
quality when compared to the original sequence. Additionally,
magnitude of the average scores using the proposed method
is the highest among the three methods, which implies that
viewers ranked the proposed method as the best result among
the three methods.

TABLE V
SUBJECTIVE TEST RESULTS OF MCIF, LR AND THE PROPOSED METHOD

average score (u) | std dev (o)
Stockholm MCIF 0.818 1.055
Lucy Richardson 1.54 0.415
Proposed 1.86 0.674
Shield MCIF 0.845 0.884
Lucy Richardson 0.954 0.723
Proposed 1.091 0.701

In order to test the statistical significance of the perceptual
testing results we employ the students t-test, where the null
hypothesis is that the average score is p = 0, i.e., the proposed
algorithm has no positive effect over the original sequence. If
we let the confidence interval a = 0.01, then the rejection
region is p > 2.3590/\/N, where p is the average score, o
is the standard deviation, and NV is the number of viewers. It
can be shown that the value 2.359¢0/ \/N of MCIF, LR and the
proposed method are 0.6406, 0.2528, 0.4105 respectively for
Stockholm, and 0.5384, 0.4404, 0.4270 respectively for Shield.
Since all p are greater than these figures, we conclude that all
three methods give improvements to the original sequence .
In addition, it can be shown that for the proposed method,
the gap between the average score and the lower bound is
larger than that of the other two methods. This implies that
statistically the proposed method gives a more positive effect
to the original sequence than the other two methods.

V. CONCLUSION

This paper has three contributions. First, we proved the
equivalence between temporal and spatial integration. The
equivalence allows us to simulate the LCD blur efficiently in
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the spatial domain, instead of a time consuming integration in
the temporal domain. Experiments verified that computing the
LCD motion blur in the spatial domain is as accurate as com-
puting it in the temporal domain. Second, we studied the limit
of eye movement speed. Based on a number of papers in the
cognitive science literature, we showed that perceptual quality
reduces as picture motion increases. Beyond certain speed
limit, human eyes cannot retrieve any useful content from
the picture. Consequently, we showed the size of the LCD
motion blur filter should be limited, and the optimal size can be
determined using a visual subjective test. Third, we proposed
an optimization framework to pre-process the LCD signal so
that it can compensate the motion blur. In order to maintain the
spatial and temporal consistencies, we introduced an /;-norm
regularization function on the directional derivatives and a l-
norm regularization function on difference between current
and previous solution. Experimental results showed that our
proposed method has relatively higher PSNR, lower spatial
and temporal error than state-of-art algorithms. Future research
directions include the robustness of the algorithm towards
the errors introduced by motion estimation algorithms, and
methods to restore texture areas.
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